Combescot, R. Superconductivity: An Introduction (Cambridge Univ. Press, 2022).
Fossheim, K. & Sudbø, A. Superconductivity: physics and applications. Supercond. Phys. Appl. (2005).
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).
Van Delft, D. & Kes, P. The discovery of superconductivity. Europhys. N. 42, 21–25 (2011).
Goodstein, D. & Goodstein, J. Richard Feynman and the history of superconductivity. Phys. Perspect. 2, 30–47 (2000).
Kunzler, J. E., Buehler, E., Hsu, F. S. L. & Wernick, J. H. Superconductivity in Nb3Sn at high current density in a magnetic field of 88 kgauss. Phys. Rev. Lett. 6, 89–91 (1961).
Matthias, B. T., Geballe, T. H., Geller, S. & Corenzwit, E. Superconductivity of Nb3Sn. Phys. Rev. 95, 1435 (1954).
Hardy, G. F. & Hulm, J. K. The superconductivity of some transition metal compounds. Phys. Rev. 93, 1004–1016 (1954).
Hardy, G. F. & Hulm, J. K. Superconducting silicides and germanides. Phys. Rev. 89, 884 (1953).
Banno, N. Low-temperature superconductors: Nb3Sn, Nb3Al, and NbTi. Superconductivity 6, 100047 (2023).
Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. für Phys. B Condens. Matter 64, 189–193 (1986).
Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Yb–Ba–Cu–O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987).
Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993).
Putilin, S. N., Antipov, E. V., Chmaissem, O. & Marezio, M. Superconductivity at 94 K in HgBa2Cu04 + δ. Nature 362, 226–228 (1993).
Kaneko, T., Yamauchi, H. & Tanaka, S. Zero-resistance temperature of Tl-based ‘2223’ superconductor increased to 127 K. Phys. C. Supercond. Appl. 178, 377–382 (1991).
Parkin, S. S. P. et al. Bulk superconductivity at 125 K in Tl2Ca2Ba2Cu3Ox. Phys. Rev. Lett. 60, 2539–2542 (1988).
Gopalakrishnan, I. K., Yakhmi, J. V. & Iyer, R. M. Stabilization of superconductivity in TlBa2CuO5–δ at 9.5 K and its enhancement to 43 K in TlBaSrCuO5–δ. Phys. C. Supercond. Appl. 175, 183–186 (1991).
Putilin, S. N., Bryntse, I. & Antipov, E. V. New complex copper oxides: HgBa2RCu2O7 (R = La, Nd, Eu, Gd, Dy, Y). Mater. Res. Bull. 26, 1299–1307 (1991).
Choi, C. Q. Superconducting wire sets new current capacity record. IEEE Spectrum (2024).
National MagLab. Engineering critical current density vs. applied field for superconductors available in long lengths; (2018).
eCAPITAL Entrepreneurial Partners. Record performance for HTS wires: current carrying capacity of 1350 amperes reached; (2020).
Sumption, M. D., Murphy, J., Susner, M. & Haugan, T. Performance metrics of electrical conductors for aerospace cryogenic motors, generators, and transmission cables. Cryogenics 111, 103171 (2020).
Song, X. et al. Designing and basic experimental validation of the world’s first MW-class direct-drive superconducting wind turbine generator. IEEE Trans. Energy Convers. 34, 2218–2225 (2019).
Abrahamsen, A. B. et al. Superconducting wind turbine generators. Supercond. Sci. Technol. 23, 034019 (2010).
Masson, P. J., Breschi, M., Tixador, P. & Luongo, C. A. Design of HTS axial flux motor for aircraft propulsion. IEEE Trans. Appl. Supercond. 17, 1533–1536 (2007).
Cosmus, T. C. & Parizh, M. Advances in whole-body MRI magnets. IEEE Trans. Appl. Supercond. 21, 2104–2109 (2011).
Sykes, A. et al. Compact fusion energy based on the spherical tokamak. Nucl. Fusion 58, 016039 (2018).
Larbalestier, D., Gurevich, A., Feldmann, D. M. & Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 414, 368–377 (2001).
Tsukamoto, O. et al. AC transport current loss of assembled conductor of HTS tapes. Phys. C. Supercond. Appl. 310, 197–201 (1998).
Bucho, L. F. D., Fernandes, J. F. P., Biasion, M., Vaschetto, S. & Cavagnino, A. Experimental assessment of cryogenic cooling impact on induction motors. IEEE Trans. Energy Convers. 37, 2629–2636 (2022).
Geng, J. et al. A kilo-ampere level HTS flux pump. Supercond. Sci. Technol. 32, 74004 (2019).
Sung, H. J., Park, M., Go, B. S. & Yu, I. K. A study on the required performance of a 2 G HTS wire for HTS wind power generators. Supercond. Sci. Technol. 29, 054001 (2016).
Rumble, J. CRC Handbook of Chemistry and Physics (CRC Press, 2024).
Chen, X. H. et al. Superconductivity at 56 K in samarium-doped SrFeAsF. J. Phys. Condens. Matter 21, 142203 (2009).
Boeri, L. et al. The 2021 room-temperature superconductivity roadmap. J. Phys. Condens. Matter 34, 183002 (2022).
Yao, C. & Ma, Y. Superconducting materials: challenges and opportunities for large-scale applications. iScience 24, 102541 (2021).
Shipulin, I. A. et al. Effect of silver doping on the superconducting and structural properties of YBCO films grown by PLD on different templates. Materials 15, 5354 (2022).
Muralidhar, M., Shadab, M., Sai Srikanth, A., Jirsa, M. & Jacques, N. Review on high-performance bulk MgB2 superconductors. J. Phys. D. Appl. Phys. 57, 053001 (2024).
Durrell, J. H. et al. A trapped field of 17.6 T in melt-processed, bulk Gd–Ba–Cu–O reinforced with shrink-fit steel. Supercond. Sci. Technol. 27, 082001 (2014).
Suyama, M., Pyon, S., Iijima, Y., Awaji, S. & Tamegai, T. Trapping a magnetic field of 17.89 T in stacked coated conductors by suppression of flux jumps. Supercond. Sci. Technol. 35, 02LT01 (2022).
Godeke, A. High temperature superconductors for commercial magnets. Supercond. Sci. Technol. 36, 113001 (2023).
Superconductivity, H. Handbook of Superconductivity Vol. 1 (CRC, 2023).
Silver, T. M., Dou, S. X. & Jin, J. X. Applications of high temperature superconductors. Europhys. N. 32, 82–86 (2001).
Wulff, A. C., Abrahamsen, A. B. & Insinga, A. R. Multifilamentary coated conductors for ultra-high magnetic field applications. Supercond. Sci. Technol. 34, 053003 (2021).
Gallagher-Daggitt, G. E. Superconductor cables for pulsed dipole magnets. Rutherford Laboratory Memorandum RHEL/M/A25 (1973).
Goldacker, W. et al. High current DyBCO-ROEBEL assembled coated conductor (RACC). J. Phys. Conf. Ser. 43, 901–904 (2006).
Hao, L. et al. Conceptual design and optimisation of HTS Roebel tapes. IEEE Trans. Appl. Supercond. 32, 5900505 (2022).
Takayasu, M., Chiesa, L., Bromberg, L. & Minervini, J. V. HTS twisted stacked-tape cable conductor. Supercond. Sci. Technol. 25, 014011 (2012).
Weiss, J. D., Mulder, T., Ten Kate, H. J. & Van Der Laan, D. C. Introduction of CORC® wires: highly flexible, round high-temperature superconducting wires for magnet and power transmission applications. Supercond. Sci. Technol. 30, 14002 (2017).
Hao, L. et al. Field canceling effect in double-layer Roebel tapes. IEEE Trans. Appl. Supercond. (2022).
Hao, L. et al. AC loss measuring and modeling of single-layer Roebel tapes. IEEE Trans. Appl. Supercond. 34, 1–5 (2024).
Hao, L. et al. Transport AC losses in multiple-layer Roebel tapes. IEEE Trans. Appl. Supercond. (2023).
Majoros, M., Sumption, M. D., Collings, E. W. & Van Der Laan, D. C. Magnetization losses in superconducting YBCO conductor-on-round-core (CORC) cables. Supercond. Sci. Technol. 27, 125008 (2014).
Terzioǧlu, R. et al. AC loss characteristics of CORC® cable with a Cu former. Supercond. Sci. Technol. 30, 085012 (2017).
Vojenčiak, M. et al. Magnetization AC loss reduction in HTS CORC® cables made of striated coated conductors. Supercond. Sci. Technol. 28, 104006 (2015).
Jin, H. et al. The performance of first CORC cable solenoid insert for development of CFETR high-field magnet. Nucl. Fusion. 60, 096028 (2020).
Wu, Y. et al. Mechanical analysis of CORC CICC for future fusion CS magnet. IEEE Trans. Appl. Supercond. 34, 1–5 (2024).
Mulder, T. et al. Design and preparation of two ReBCO-CORC® cable-in-conduit conductors for fusion and detector magnets. IOP Conf. Ser. Mater. Sci. Eng. 279, 012033 (2017).
Takayasu, M., Mangiarotti, F. J., Chiesa, L., Bromberg, L. & Minervini, J. V. Conductor characterization of YBCO twisted stacked-tape cables. IEEE Trans. Appl. Supercond. 23, 4800104 (2013).
Takayasu, M. Minervini, J. V. & Bromberg, L. HTS twisted stacked-tape cable development. Rep. PSFC/JA-11-10 (2011).
Wang, M. et al. Three-dimensional numerical study on transport ac loss of soldered-stacked-square-twisted (3S-T) wire. IEEE Trans. Appl. Supercond. (2019).
Wang, M. et al. Fabrication and critical current evaluation for HTS twisted cables consisting of soldered-stacked-square (3S) wires. IEEE Trans. Appl. Supercond. (2021).
Lei, Z. et al. AC loss study of high-temperature superconducting stacked conductors based on parameter identification method. Phys. C. Supercond. Appl. 619, 1354451 (2024).
Wenninger, J. The LHC collider. Comptes Rendus Phys. 16, 347–355 (2015).
Seo, K. & Morita, M. Guidelines for LTS magnet design based on transient stability. Cryogenics 46, 354–361 (2006).
Huang, X. et al. An active quench protection system for MRI magnets. IEEE Trans. Appl. Supercond. 20, 2091–2094 (2010).
Green, M. A. Various quench protection methods for HTS magnets. IOP Conf. Ser. Mater. Sci. Eng. 755, 012134 (2020).
Neumeyer, C. et al. ITER power supply innovations and advances. In 2013 IEEE 25th Symposium on Fusion Engineering (SOFE) 1–8 (2013).
Lu, J. et al. Lap joint resistance of YBCO coated conductors. IEEE Trans. Appl. Supercond. 21, 3009–3012 (2011).
Feigelman, M. V., Geshkenbein, V. B. & Vinokur, V. M. Flux creep and current relaxation in high-Tc superconductors. Phys. Rev. B 43, 6263–6265 (1991).
Coombs, T. A. Superconducting flux pumps. J. Appl. Phys. 125, 230902 (2019).
Wang, W., Wei, J., Yang, C., Wu, C. & Li, H. Review of high temperature superconducting flux pumps. Superconductivity 3, 100022 (2022).
Wang, W. & Coombs, T. Macroscopic magnetic coupling effect: the physical origination of a high-temperature superconducting flux pump. Phys. Rev. Appl. 9, 44022 (2018).
Geng, J. & Coombs, T. A. Mechanism of a high- Tc superconducting flux pump: Using alternating magnetic field to trigger flux flow. Appl. Phys. Lett. 107, 142601 (2015).
Hoffmann, C., Pooke, D. & Caplin, A. D. Flux pump for HTS magnets. IEEE Trans. Appl. Supercond. 21, 1628–1631 (2011).
Hamilton, K. et al. Design and performance of a ‘squirrel-cage’ dynamo-type HTS flux pump. IEEE Trans. Appl. Supercond. (2018).
Bai, Z., Yan, G., Wu, C., Ding, S. & Chen, C. A novel high temperature superconducting magnetic flux pump for MRI magnets. Cryogenics 50, 688–692 (2010).
Fu, L., Matsuda, K., Shen, B. & Coombs, T. HTS flux pump charging an HTS coil: experiment and modeling. IEEE Trans. Appl. Supercond. (2021).
Wang, W. et al. Charging 2 G HTS double pancake coils with a wireless superconducting DC power supply for persistent current operation. IEEE Trans. Appl. Supercond. (2018).
Zhang, Y. et al. Compact linear-motor type flux pumps with different wavelengths for high-temperature superconducting magnets. IEEE Trans. Appl. Supercond. (2020).
Ma, J., Geng, J. & Coombs, T. A. Flux pumping for non-insulated and metal-insulated HTS coils. Supercond. Sci. Technol. 31, 015018 (2018).
Leuw, B., Geng, J., Rice, J. H. P., Moseley, D. A. & Badcock, R. A. A half-wave superconducting transformer-rectifier flux pump using Jc(B) switches. Supercond. Sci. Technol. 35, 035009 (2022).
Geng, J., Brooks, J. M., Bumby, C. W. & Badcock, R. A. Time-varying magnetic field induced electric field across a current-transporting type-II superconducting loop: beyond dynamic resistance effect. Supercond. Sci. Technol. 35, 025018 (2022).
Geng, J. & Coombs, T. A. An HTS flux pump operated by directly driving a superconductor into flux flow region in the E–J curve. Supercond. Sci. Technol. 29, 095004 (2016).
Wang, W. et al. Test of two kilo-amp linear-motor type flux pumps with converged output current over 3.1 kA. IEEE Trans. Appl. Supercond. 34, 1–5 (2024).
Geng, J., Bumby, C. W. & Badcock, R. A. Maximising the current output from a self-switching kA-class rectifier flux pump. Supercond. Sci. Technol. 33, 045005 (2020).
Venuturumilli, S. et al. Temperature dependent behavior of a kA-class superconducting flux pump with a continuous cylindrical stator. Appl. Phys. Lett. 123, 202601 (2023).
Lei, Y. et al. Through-wall excitation of a conduction cooling HTS magnets by a linear-motor type flux pump. IEEE Trans. Appl. Supercond. 33, 1–4 (2023).
Wu, C. et al. Fast current regulation and persistent current maintenance of high-temperature superconducting magnets with contact power supply and flux pump. IEEE Trans. Power Electron. (2023).
Lei, Y. et al. Symmetrical bipolar current control of HTS dynamo based on a DC magnetic field. IEEE Trans. Appl. Supercond. 34, 1–5 (2024).
Creely, A. J. et al. Overview of the SPARC tokamak. J. Plasma Phys. 86, 1–25 (2020).
Winkler, T. The ecoswing project. IOP Conf. Ser. Mater. Sci. Eng. 502, 012004 (2019).
Ybanez, L. et al. ASCEND: the first step towards cryogenic electric propulsion. IOP Conf. Ser. Mater. Sci. Eng. 1241, 012034 (2022).
Molodyk, A. Faraday factory: GA-m/year of 2 G HTS in prospect synergies for accelerator magnets; (2023).
Prusseit, W. HTS-wire for high field magnet applications. Future REBCO capability in industry. THEVA (2021).
Department for Business, Energy and Industrial Strategy (BEIS). Electricity Generation Costs 2023; (2023).
Stehly, T., Duffy, P., & Hernando, D. M. 2022 Cost of Wind Energy Review, Technical Report; (NREL, 2023).
Hoang, T. K., Queval, L., Vido, L. & Nguyen, D. Q. Levelized cost of energy comparison between permanent magnet and superconducting wind generators for various nominal power. IEEE Trans. Appl. Supercond. 32, 1–6 (2022).
Jung, G. E., Sung, H. J., Dinh, M. C., Park, M. & Shin, H. A comparative analysis of economics of PMSG and SCSG floating offshore wind farms. Energies 14, 1386 (2021).
Teyber, R., Brouwer, L., Godeke, A. & Prestemon, S. Thermoeconomic cost optimization of superconducting magnets for proton therapy gantries. Supercond. Sci. Technol. 33, 105005 (2020).
Damadian, R. Tumor detection by nuclear magnetic resonance. Science 171, 1151–1153 (1971).
Bottomley, P. A., Hardy, C. J., Argersinger, R. E. & Allen-Moore, G. A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? Med. Phys. 14, 1–37 (1987).
Damadian, R. Field focusing n.m.r. (FONAR) and the formation of chemical images in man. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 289, 489–500 (1980).
Yanagisawa, Y., Hamada, M., Hashi, K. & Maeda, H. Review of recent developments in ultra-high field (UHF) NMR magnets in the Asia region. Supercond. Sci. Technol. 35, 044006 (2022).
Choi, Y. et al. Persistent-mode operation and magnetization behavior of a solid-nitrogen-cooled MgB2 small-scale test coil towards a tabletop 1.5-T osteoporosis MRI. Supercond. Sci. Technol. 33, 125007 (2020).
Kodama, M. et al. Feasibility study of novel rapid ramp-down procedure in MgB2MRI magnet using persistent current switch with high off-resistivity. Supercond. Sci. Technol. 34, 74003 (2021).
Yokoyama, S. et al. Design and cooling properties of high stable field REBCO superconducting magnet for MRI. IEEE Trans. Appl. Supercond. 30, 1–4 (2020).
Ozturk, Y. et al. Current status in building a compact and mobile HTS MRI instrument. IEEE Trans. Appl. Supercond. 31, 1–5 (2021).
Wang, T. et al. Conceptual design of 3-T All HTS MRI using no-insulation winding technology: electromagnetic stress reinforced structure. IEEE Trans. Appl. Supercond. 31, 1–5 (2021).
Parizh, M., Lvovsky, Y. & Sumption, M. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges. Supercond. Sci. Technol. 30, 014007 (2017).
Parkinson, B. J., Slade, R., Mallett, M. J. D. & Chamritski, V. Development of a cryogen free 1.5 T YBCO HTS magnet for MRI. IEEE Trans. Appl. Supercond. 23, 4400405 (2013).
Terao, Y. et al. Newly designed 3 T MRI magnet wound with Bi-2223 tape conductors. IEEE Trans. Appl. Supercond. 23, 4400904 (2013).
Mitsubishi Electric Corporation. Mitsubishi Electric, Kyoto Univ. and Tohoku Univ. succeed in world’s first 3 Tesla MRI with high-temperature coils; (2020).
Molodyk, A. & Larbalestier, D. C. The prospects of high-temperature superconductors. Science 380, 1220–1222 (2023).
Kalsi, S. S. Superconducting wind turbine generator employing MgB2 windings both on rotor and stator. IEEE Trans. Appl. Supercond. 24, 5201907 (2014).
Song, X. et al. Commissioning of the world’s first full-scale MW-class superconducting generator on a direct drive wind turbine. IEEE Trans. Energy Convers. 35, 1697–1704 (2020).
Karmaker, H. et al. High-power dense electric propulsion motor. IEEE Trans. Ind. Appl. 51, 1341–1347 (2015).
Haran, K. S. et al. High power density superconducting rotating machines—development status and technology roadmap. Supercond. Sci. Technol. 30, 123002 (2017).
Fuel Cellsand Hydrogen 2 Joint Undertaking. Hydrogen-powered aviation. European Union https://op.europa.eu/s/zXfd.
Ford, T. Boeing 777 fuel system. Aircr. Eng. Aerosp. Technol. 70, 199–202 (1998).
Kramer, D. Hydrogen-powered aircraft may be getting a lift. Phys. Today 73, 27–29 (2020).
Wesson, J. Tokamaks (Oxford Univ. Press, 2011).
Bruzzone, P. et al. High temperature superconductors for fusion magnets. Nucl. Fusion. 58, 103001 (2018).
Peng, Y. K. M. & Strickler, D. J. Features of spherical torus plasmas. Nucl. Fusion. 26, 769–777 (1986).
Kaye, S. M., Connor, J. W. & Roach, C. M. Thermal confinement and transport in spherical tokamaks: a review. Plasma Phys. Control. Fusion. 63, 123001 (2021).
Nuclear Business Platform. $6.2 billion fusion energy funding race: turning the dream of creating a star on Earth into reality; (2024).
Meschini, S. et al. Review of commercial nuclear fusion projects. Front. Energy Res. 11, 1157394 (2023).
Seife, C. World’s largest fusion project is in big trouble, new documents reveal. Scientific American (2023).
Zhai, Y., Otto, A. & Zarnstorff, M. Low cost, simpler HTS cable conductors for fusion energy systems. IOP Conf. Ser. Mater. Sci. Eng. 1241, 012023 (2022).
Molodyk, A. et al. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Sci. Rep. 11, 1–11 (2021).
Hartwig, Z. S. et al. VIPER: an industrially scalable high-current high-temperature superconductor cable. Supercond. Sci. Technol. 33, 11LT01 (2020).
Zhai, Y., van der Laan, D., Connolly, P. & Kessel, C. Conceptual design of HTS magnets for fusion nuclear science facility. Fusion. Eng. Des. 168, 112611 (2021).
Hartwig, Z. S. et al. The SPARC toroidal field model coil program. IEEE Trans. Appl. Supercond. 34, 1–16 (2023).
Zhai, Y. et al. R&D needs for a U.S. fusion magnet base program. IEEE Trans. Appl. Supercond. 34, 1–5 (2024).
Technavio. High temperature superconducting wires market trends [2024 Report]; (2024).
Patel, I. et al. Stochastic optimisation and economic analysis of combined high temperature superconducting magnet and hydrogen energy storage system for smart grid applications. Appl. Energy 341, 121070 (2023).
Fazilleau, P., Chaud, X., Debray, F., Lécrevisse, T. & Song, J.-B. 38 mm diameter cold bore metal-as-insulation HTS insert reached 32.5 T in a background magnetic field generated by resistive magnet. Cryogenics. 106, 103053 (2020).
Song, J. B. et al. Metal-as-insulation HTS insert for very-high-field magnet: a test report after repair. IEEE Trans. Appl. Supercond. 32, 4300206 (2022).
Lindley, B., Roulstone, T., Locatelli, G. & Rooney, M. Can fusion energy be cost-competitive and commercially viable? An analysis of magnetically confined reactors. Energy Policy 177, 113511 (2023).
Namburi, D. K., Shi, Y. & Cardwell, D. A. The processing and properties of bulk (RE)BCO high temperature superconductors: current status and future perspectives. Supercond. Sci. Technol. 34, 053002 (2021).
Tsotsopoulou, E. et al. Modelling and fault current characterization of superconducting cable with high temperature superconducting windings and copper stabilizer layer. Energies 13, 6646 (2020).
Christen, D. Current limits to wire technology. Nature 392, 862–863 (1998).
Chen, P. et al. Development of a persistent superconducting joint between Bi-2212/Ag-alloy multifilamentary round wires. Supercond. Sci. Technol. 30, 025020 (2017).
Zhang, Z., MacManus-Driscoll, J., Suo, H. & Wang, Q. Review of synthesis of high volumetric density, low gravimetric density MgB2 bulk for potential magnetic field applications. Superconductivity 3, 100015 (2022).
Braccini, V., Nardelli, D., Penco, R. & Grasso, G. Development of ex situ processed MgB2 wires and their applications to magnets. Phys. C. Supercond. its Appl. 456, 209–217 (2007).
Canfield, P. C. et al. Superconductivity in dense MgB2 wires. Phys. Rev. Lett. 86, 2423–2426 (2001).
Goldacker, W. et al. Roebel cables from REBCO coated conductors: a one-century-old concept for the superconductivity of the future. Supercond. Sci. Technol. 27, 1–5 (2014).
Van Der Laan, D. C., Weiss, J. D. & McRae, D. M. Status of CORC® cables and wires for use in high-field magnets and power systems a decade after their introduction. Supercond. Sci. Technol. 32, 33001 (2019).
Takayasu, M., Chiesa, L., Allen, N. C. & Minervini, J. V. Present status and recent developments of the twisted stacked-tape cable conductor. IEEE Trans. Appl. Supercond. 26, 25–34 (2016).
Takayasu, M. Width-bending characteristic of REBCO HTS tape and flat-tape Rutherford-type cabling. Supercond. Sci. Technol. 34, 125020 (2021).
Bergen, A. et al. Design and in-field testing of the world’s first ReBCO rotor for a 3.6 MW wind generator. Supercond. Sci. Technol. 32, 125006 (2019).
Clynes, T. This fusion reactor is held together with tape. IEEE Spectrum (2023).
Davies, A. High-temperature superconducting magnet technology for fusion energy. Tokamak Energy (2023).
Venuturumilli, S. Tokamak energy HTS magnet technology; (2023).
McNamara, S. et al. Achievement of ion temperatures in excess of 100 million degrees Kelvin in the compact high-field spherical tokamak ST40. Nucl. Fusion 63, 054002 (2023).
Philip, Ball The race to fusion energy. Nature 599, 362–366 (2021).
Rodriguez-Fernandez, P. et al. Overview of the SPARC physics basis towards the exploration of burning-plasma regimes in high-field, compact tokamaks. Nuclear Fusion 62, 042003 (2022).
Commonwealth Fusion Systems. Commonwealth Fusion Systems signs $15 million DOE agreement to advance commercial fusion energy. PR Newswire (2024).
Dittmar, M. Status and prospects of the ITER plasma physics experiment: is it time to terminate the project? ETH Zürich (2019).
Summary of presentation by Pietro Barabaschi, ITER Director-General; (2024).

