Wang, C., Engels, A. & Wang, Z. Overview of research on China’s transition to low-carbon development: The role of cities, technologies, industries and the energy system. Renew. Sustain. Energy Rev. 81, 1350–1364 (2018).
Chen, Y. et al. Prospects in China for nuclear development up to 2050. Prog. Nucl. Energy 103, 81–90 (2018).
y León, S. B. World Nuclear Performance Report 2023. Tech. Rep. (World Nuclear Association, 2023). https://world-nuclear.org/our-association/publications/global-trends-reports/world-nuclear-performance-report-2023
Fukuda, K., Danker, W., Lee, J., Bonne, A. & Crijns, M. IAEA Overview of Global Spent Fuel Storage (Storage of spent fuel from Power Reactors, C &S Paper Series, 2003).
Holdsworth, A. F., Eccles, H., Sharrad, C. A. & George, K. Spent nuclear fuel-waste or resource? The potential of strategic materials recovery during recycle for sustainability and advanced waste management. In Waste, vol. 1, 249–263 (MDPI, 2023).
Gu, L. & Su, X. Latest research progress for LBE coolant reactor of China initiative accelerator driven system project. Front. Energy 1–22 (2021).
Andriamonje, S. et al. Experimental determination of the energy generated in nuclear cascades by a high energy beam. Phys. Lett. B 348, 697–709 (1995).
Rubbia, C. et al. Conceptual design of a fast neutron operated high power energy amplifier. CERN-AT-95-44-ET (1995).
Salvatores, M. & Palmiotti, G. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Prog. Part. Nucl. Phys. 66, 144–166 (2011).
OECD. Physics and safety of transmutation systems: A status report. OECD Pap. 6, 13. (2006).
Zhan, W.-L. et al. Advanced fission energy program-ADS transmutation system. Bull. Chin. Acad. Sci. 27, 375–381 (2012).
Wang, X.-L. et al. Photo-transmutation of long-lived radionuclide \(^{135}\)Cs by laser-plasma driven electron source. Laser Part. Beams 34, 433–439 (2016).
Wang, X. et al. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator. Phys. Plasmas 24 (2017).
ur Rehman, H., Lee, J. & Kim, Y. Optimization of the laser-Compton scattering spectrum for the transmutation of high-toxicity and long-living nuclear waste. Ann. Nucl. Energy 105, 150–160 (2017).
Rehman, H. U., Lee, J. & Kim, Y. Comparison of the laser-Compton scattering and the conventional Bremsstrahlung X-rays for photonuclear transmutation. Int. J. Energy Res. 42, 236–244 (2018).
Imasaki, K. et al. Gamma-ray beam transmutation. Energy Convers. Manag. 49, 1922–1927 (2008).
Sun, X. et al. Transmutation of long-lived fission products in an advanced nuclear energy system. Sci. Rep. 12, 2240 (2022).
Krasny, M. W. The Gamma Factory proposal for CERN. https://doi.org/10.48550/arXiv.1511.07794. arXiv:1511.07794 [hep-ex] (2015).
Budker, D. et al. Expanding nuclear physics horizons with the Gamma Factory. Ann. Phys. 534, 2100284 (2022).
Jaeckel, J., Lamont, M. & Vallée, C. The quest for new physics with the physics beyond colliders programme. Nat. Phys. 16, 393–401 (2020).
Krasny, M. et al. The CERN Gamma Factory Initiative: An ultra-high intensity gamma source. In 9th International Particle Accelerator Conference, Vancouver, Canada, CERN-ACC-2018-161, CERN-PBC-CONF-2021-017. (2018).
Berman, B. L. & Fultz, S. Measurements of the giant dipole resonance with monoenergetic photons. Rev. Mod. Phys. 47, 713 (1975).
Nichita, D., Balabanski, D. L., Constantin, P., Krasny, M. W. & Płaczek, W. Radioactive ion beam production at the gamma factory. Ann. Phys. 534, 2100207. https://doi.org/10.1002/andp.202100207. arXiv:2105.13058 (2022).
Krasny, M. W. Gamma factory. In The Future of the Large Hadron Collider: A Super-Accelerator with Multiple Possible Lives (eds Brünning, O. et al.) 297–303 (World Scientific, 2023). https://doi.org/10.1142/9789811280184_0021.
Wu Chao, A., Tigner, M., Weise, H. & Zimmermann, F. (eds.) Handbook of Accelerator Physics and Engineering, Gamma Factory (World Scientific, 2023).
Luo, W. et al. Estimates for production of radioisotopes of medical interest at extreme light infrastructure—Nuclear physics facility. Appl. Phys. B 122, 1–11. (2016).
Hirlaender, S. et al. Lifetime and beam losses studies of partially strip ions in the SPS (\(^{129}\)\(\text{Xe}^{39+}\)). In 9th International Particle Accelerator Conference,10.18429/JACoW-IPAC2018-THPMF015. (2018).
Dutheil, Y. et al. Gamma Factory for CERN initiative—progress report. PoS EPS-HEP2019, 020. (2020).
Kröger, F. M. et al. Charge state tailoring of relativistic heavy ion beams for the Gamma Factory project at CERN. X Ray Spectrom. 49, 25–28. (2019).
Gorzawski, A. et al. Collimation of partially stripped ions in the CERN Large Hadron Collider. Phys. Rev. Accel. Beams 23, 101002. (2020) arxiv:2007.12507..
Schaumann, M. et al. First partially stripped ions in the LHC (\(^{208}\text{ Pb}^{81+}\)). In Journal of Physics: Conference Series (eds Boland, M., Tanaka, H., Button, D. & Dowd, R.). CERN-PBC-Note-2021-019. (2019).
Ramjiawan, R. L. et al. SPS MD5044: Machine stability characterisation of Gamma Factory SPS Proof-of-Principle Experiment. CERN-ACC-NOTE-2022-0014; CERN-PBC-Notes-2022-006. (2022).
Martens, A. et al. Design of the optical system for the gamma factory proof of principle experiment at the CERN Super Proton Synchrotron. Phys. Rev. Accel. Beams 25, 101601. (2022).
Lu, X. Y. et al. Stable 500 kW average power of infrared light in a finesse 35 000 enhancement cavity. Appl. Phys. Lett. 124, 251105. (2024).
Lu, X. Y. et al. 710 kW stable average power in a 45,000 finesse two-mirror optical cavity. Opt. Lett. 49, 6884–6887. (2024).
Granados, E. et al. Prospects for extreme light sources at the CERN accelerator complex. In Compact EUV & X-ray Light Sources 2024. (2024).
Płaczek, W. et al. Gamma Factory at CERN—Novel research tools made of light. Acta Phys. Polon. B 50, 1191–1203. (2019) arxiv:1903.09032.
Curatolo, C., Krasny, M., Placzek, W. & Serafini, L. New simulation programs for partially stripped ions—laser light collisions. In 9th International Particle Accelerator Conference. (2018).
Krasny, M. W., Petrenko, A. & Płaczek, W. BE-ABP Gamma Factory Software Workshop. (2021).
Apyan, A., Krasny, M. W. & Płaczek, W. Gamma Factory high-intensity muon and positron source: Exploratory studies. Phys. Rev. Accel. Beams 26, 083401. (2023) arxiv:2212.06311.
Krasny, M. W. Electron beam for LHC. Nucl. Instrum. Meth. A 540, 222–234. (2005) arxiv:hep-ex/0405028.
Płaczek, W. & Krasny, M. W. Gamma Factory and precision physics at the LHC. Acta Phys. Polon. Suppl. 17, A28. (2024).
Budker, D. et al. Expanding nuclear physics horizons with the Gamma Factory. Ann. Phys. 534, 2100284. (2022) arxiv:2106.06584..
Budker, D., Gorchtein, M., Krasny, M. W., Pálffy, A. & Surzhykov, A. Physics opportunities with the Gamma Factory. Ann. Phys. 534, 2200004. (2022).
Budker, D. et al. Atomic physics studies at the Gamma Factory at CERN. Ann. Phys. 532, 2000204. (2020) arxiv:2003.03855..
Bieroń, J., Krasny, M. W., Płaczek, W. & Pustelny, S. Optical excitation of ultra-relativistic partially stripped ions. Ann. Phys. 534, 2100250. (2022) arxiv:2106.00330.
Serbo, V. G., Surzhykov, A. & Volotka, A. Resonant scattering of plane-wave and twisted photons at the Gamma Factory. Ann. Phys. 534, 2100199. (2022) arxiv:2108.01859.
Flambaum, V. V., Jin, J. & Budker, D. Resonance photoproduction of pionic atoms at the proposed Gamma Factory. Phys. Rev. C 103, 054603. (2021) arxiv:2010.06912.
Wojtsekhowski, B. & Budker, D. Local Lorentz invariance tests for photons and hadrons at the Gamma Factory. Ann. Phys. 534, 2100141. (2022) arxiv:2104.03784..
Karbstein, F. Vacuum Birefringence at the Gamma Factory. Ann. Phys. 534, 2100137. (2022) arxiv:2106.06359.
Balkin, R., Krasny, M. W., Ma, T., Safdi, B. R. & Soreq, Y. Probing axion-like-particles at the CERN Gamma Factory. Ann. Phys. 534, 2100222. (2022) arxiv:2105.15072.
Chakraborti, S., Feng, J. L., Koga, J. K. & Valli, M. Gamma factory searches for extremely weakly interacting particles. Phys. Rev. D 104, 055023. (2021) arxiv:2105.10289.
Krasny, M. W., Petrenko, A. & Płaczek, W. The Gamma Factory path to high-luminosity LHC with isoscalar beams. PoS ICHEP2020, 690. (2021).
Zimmermann, F. Accelerator technology and beam physics of future colliders. Front. Phys. 10, 888395. (2022).
Krasny, M. W., Petrenko, A. & Płaczek, W. High-luminosity Large Hadron Collider with laser-cooled isoscalar ion beams. Prog. Part. Nucl. Phys. 114, 103792. (2020) arxiv:2003.11407.
Cooke, D. A. et al. Measurement and application of electron stripping of ultrarelativistic \(^{208}{\rm Pb} ^{81+}\). Nucl. Instrum. Meth. A 988, 164902. (2021) arxiv:2006.16160.
Zimmermann, F. et al. Muon collider based on Gamma Factory, FCC-ee and plasma target. JACoW IPAC2022, 1691–1694. (2022).
Zimmermann, F. et al. Advanced accelerator concepts for dark sector searches and fast muon acceleration. JACoW IPAC2024, MOPR17. (2024).
Zimmermann, F. Beam physics Frontier problems. JACoW eeFACT2022, 42–51. (2023).
Brüning, O. S., Collier, P., Lebrun, P., Myers, S., Ostojic, R., Poole, J. & Proudlock, P. (eds) LHC Design Report Vol. 1: The LHC Main Ring (2004).
Zurbano Fernandez, I. et al. High-Luminosity Large Hadron Collider (HL-LHC): Technical design report. Tech. Rep. (CERN, 2020). https://doi.org/10.23731/CYRM-2020-0010
Krasny, M. W. et al. Gamma Factory Proof-of-Principle experiment. Letter-of-Intent (LoI), CERN-SPSC-2019-031, SPSC-I-253 (2019).
Płaczek, W. Monte Carlo event generator GF-CAIN for photon–PSI collisions with atomic resonant absorption and emission. The program available from the author: wieslaw.placzek@uj.edu.pl (2023).
Shi, X.-M. et al. Geant4 development for actinides photofission simulation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., 169222 (2024).
Koning, A. J. & Rochman, D. Modern nuclear data evaluation with the TALYS code system. Nucl. Data Sheets 113, 2841–2934 (2012).
Liu, Y. et al. A fully hybrid integrated Erbium-based laser. Nat. Photonics, 1–7 (2024).
Xoubi, N. Neutronic design study of accelerator driven system (ADS) for Jordan subcritical reactor as a neutron source for nuclear research. Appl. Radiat. Isot. 131, 71–76 (2018).
Fang, Z.-X. et al. Theoretical analysis of long-lived radioactive waste in pressurized water reactor. Nucl. Sci. Tech. 32, 72 (2021).
Carta, M., Dulla, S., Peluso, V., Ravetto, P. & Bianchini, G. Calculation of the effective delayed neutron fraction by deterministic and Monte Carlo methods. Sci. Technol. Nucl. Install. 2011, 109–124 (2011).
Verboomen, B., Haeck, W. & Baeten, P. Monte Carlo calculation of the effective neutron generation time. Ann. Nucl. Energy 33, 911–916 (2006).
Chiba, S. et al. Method to reduce long-lived fission products by nuclear transmutations with fast spectrum reactors. Sci. Rep. 7, 13961 (2017).
Morita, Y. et al. Capacitor bank of power supply for J-PARC MR main magnets. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 901, 156–163 (2018).
Hayakawa, T. et al. Proposal for selective isotope transmutation of long-lived fission products using quasi-monochromatic \(\gamma\)-ray beams. J. Nucl. Sci. Technol. 53, 2064–2071 (2016).
Yokoya, K. Monte Carlo program CAIN version 2.42 (KEK, 2011).
International Linear Collider (ILC). https://linearcollider.org
Hartling, K., Ciungu, B., Li, G., Bentoumi, G. & Sur, B. The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 891, 25–31 (2018).
Guthrie, M. P., Alsmiller, R. G. & Bertini, H. W. Calculation of the capture of negative pions in light elements and comparison with experiments pertaining to cancer radiotherapy. Nucl. Instrum. Methods 66, 29–36 (1968).
Bertini, H. W. & Guthrie, M. P. News item results from medium-energy intranuclear-cascade calculation. Nucl. Phys. A 169, 670–672. (1971).
Pelowitz, D. MCNPX User’s Manual, Version 2.5.0. Los Alamos National Laboratory Report, LA-CP-05-0369 (2005).
Grossi, M. R. The database on nuclear power reactors. https://pris.iaea.org/pris/
Kailas, S., Hemalatha, M. & Saxena, A. Nuclear transmutation strategies for management of long-lived fission products. Pramana 85, 517–523 (2015).
Yang, W., Kim, Y., Hill, R., Taiwo, T. & Khalil, H. Long-lived fission product transmutation studies. Nucl. Sci. Eng. 146, 291–318 (2004).
Wang, H. et al. Spallation reaction study for long-lived fission products in nuclear waste. In EPJ Web of Conferences, vol. 239, 06003 (EDP Sciences, 2020).
Filipescu, D. et al. Photofission and photoneutron cross sections for \(^{238}\)U and \(^{232}\)Th. In EPJ Web of Conferences, vol. 284, 04010 (EDP Sciences, 2023).
Ismailov, K., Saito, M., Sagara, H. & Nishihara, K. Feasibility of uranium spallation target in accelerator-driven system. Prog. Nucl. Energy 53, 925–929 (2011).
Loewen, E. P. & Tokuhiro, A. T. Status of research and development of the lead-alloy-cooled fast reactor. J. Nucl. Sci. Technol. 40, 614–627 (2003).
Lu, T. et al. Preliminary safety analysis on loss of flow accidents and external source transients for LBE cooled ADSR core. Prog. Nucl. Energy 88, 134–146 (2016).
Sasa, T., Saito, S., Obayashi, H. & Ariyoshi, G. 250 kW LBE spallation target for ADS development in J-PARC. In Proceedings of the 3rd J-PARC Symposium (J-PARC2019), 011051 (2021).
Bauer, G. Overview on spallation target design concepts and related materials issues. J. Nucl. Mater. 398, 19–27 (2010).

